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Monte Carlo simulations are used to study dislocation glide mediated plasticity in carbon nanostructures. A
detailed analysis of the simulations leads to identification of a type of defect, a dislocation screened by multiple
dislocation dipoles, as the mediator of plastic deformation. The defects appear under high stress conditions.
The appearance of these defects is rationalized in terms of the competition between dislocation core energy and
the buckling inherent to dislocation motion within an essentially two-dimensional membrane. These defects
thus represent a deformation mechanism that is uniquely found in nominally two-dimensional nanostructures.
The influence of these defects on the predicted mechanical properties of carbon nanostructures is discussed.
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I. INTRODUCTION

Recent experiments into the nature of deformation and
plasticity in graphene and carbon nanotubes �CNTs� suggest
that the mechanical properties of two-dimensional systems
are complex and unique in their own right. The intrinsic
strength of these carbon-based systems is predicted to exceed
that of any known material,1 an expectation that is quantita-
tively supported by reported experimental measurements.1,2

Images of topological defects in graphene and single-walled
carbon nanotubes �SWNTs� have been directly obtained via
high resolution transmission electron microscopy,3 indicating
that defects accumulate near kinks in the plastic deformation
of the tube.4 Experimental observations of the intrinsic
ripples in graphene5 and computational explanations thereof6

indicate that buckling and bending play an active role in the
deformation. We present here theoretical and computational
evidence for a novel deformation mechanism in CNTs and
possibly other sp2 carbon systems: a stress-dependent coop-
erative motion of dislocations that gives rise to plasticity.
This deformation mechanism exists alongside more conven-
tional dislocation glide and arises from a complex and
unique interplay between buckling, plasticity, and intrinsic
defect core energies which can only occur in two-
dimensional systems.

Graphene, fullerenes, CNTs, and other sp2 carbon systems
can be thought of as two-dimensional manifolds that are free
to deform �bend, stretch, buckle, etc.� in the three-
dimensional space in which they are embedded. The plastic
deformation in sp2 carbon systems is proving to be a very
interesting phenomenon. Although direct experimental inves-
tigations into the nature of the deformation of carbon mem-
branes have only recently become accessible, the existence
of defects analogous to dislocations in conventional three-
dimensional materials were previously predicted and ex-
plored computationally.7–12 Experimental efforts13–16 have
also been undertaken to elucidate how topological �e.g.,
Stone-Wales� defects and their motion enable plastic defor-
mation in these systems. For instance, CNTs have been
shown to undergo elongations of over 280% at high tempera-
ture under tensile loads.13 This elongation is accompanied by
a reduction in nanotube diameter and the movement of kinks

along the nanotube axis, indicating a defect-mediated mecha-
nism of plastic deformation operational at the nanoscale. In-
deed, it has long been appreciated that understanding stabil-
ity, deformation, and plasticity in graphene-based systems is
critical for exploiting their unique properties in real world
applications.

Developing theories of plasticity in CNTs and other sp2

carbon systems is a nontrivial endeavor. The fact that one
must model large volumes of material limits progress. Even
more limiting, however, is the fact that plastic deformation
takes place on time scales much longer than can typically be
addressed within direct atomic scale molecular dynamics
�MD� methods.17–19 In this paper, we develop a Monte Carlo
sampling framework that can efficiently sample the phase
space consisting of all possible C-C bond rotations in an sp2

carbon network. Our approach discovers a novel topological
defect pattern that is intrinsically different from other well
documented ones, for example, vacancies,3,20 glide,21 brittle
fracture,21 sublimation of carbon dimers,10,11 carbon ad
dimers,22 etc. This pattern emerges as an array of closely
packed edge dislocations with alternating signs and is gener-
ally favored in tubes with large radius and under high tensile
stresses. We further investigated the energetic stability of this
pattern and its competing mechanisms such as dislocation
glide and brittle fracture. The temperature effects on the for-
mation of various defect patterns and the plasticity of CNTs
are studied using kinetic Monte Carlo �KMC� simulations.

II. SIMULATION METHODS

Our model relies on the following assumptions to sample
the potential-energy surface �PES�. First, the system main-
tains sp2 bonding and a constant number of atoms and bonds,
i.e., N carbon atoms and 3N /2 bonds �when periodic bound-
ary conditions are imposed�. Second, generation of four
sided rings and enneagons is prohibited. The topology of the
system is used to characterize the states accessible from the
current state by C-C bond rotations. That is, in each Monte
Carlo step, a single bond rotation drives the system from the
current state to the next. For instance, starting from a defect-
free carbon membrane, the rotation of the first bond creates a
Stone-Wales defect. Subsequent rotations can annihilate the
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original Stone-Wales defect, create an additional Stone-
Wales defect, and create an octagon that leads to strain lo-
calization and brittle failure, or move an existing dislocation
by one Burger’s vector �Fig. 1�. The atomic configuration of
each state is optimized subject to the constraint that its bond-
ing topology is fixed. In this way, PES local minima are
sampled.

The classical reactive empirical bond order �REBO�
potential23 is employed for most of our investigations. We
are primarily interested in armchair �n ,n� CNTs that are be-
lieved to be ductile at low strain and high temperature.17

Strain relaxation and creep “experiments” are implemented
by applying a constant displacement per unit length or force,
respectively, along the tube. Periodic boundary conditions
are employed. The force normalized by the initial tube cir-
cumference is defined as the engineering stress. Geometric
optimizations at each step are implemented by the fast iner-
tial relaxation engine.24 Forces are computed using analytical
derivatives of the REBO potential. The root mean square
force of the optimized structures is less than 10−4 eV /Å.

Within KMC transition rates from the current state to all
eligible next states are defined to be rij =� exp�−Eij

act /kBT�
where rij is the transition rate from state i to state j, Eij

act is
the corresponding energy barrier, � is the attempt frequency,
T is the temperature, and kB is the Boltzmann constant. The
residence time on the current state and the choice of the next
state are determined in the standard manner.25 We consider
two formulations. In the first, rates are determined entirely
by initial and final state energies.

Unfortunately, PESs predicted by the classical REBO
potential23 are not smooth enough to have well defined Hes-
sian Matrices at every point. The nonanalytic behavior frus-

trates saddle-point identification methods. To illustrate this
point, the PES of creating one Stone-Wales defect within a
buckyball, C60, is constructed along two chosen reaction
coordinates26 while relaxing all other degrees of freedom
�Fig. 2�a��. The REBO potential leads to a PES with cusps
wherever two sheets of the energy surface characterized by
differing bonding topologies meet. These cusps are probably
due to the bond breaking and forming during the defect
nucleation and the fact that the REBO potential computes the
total energy as the sum of all bond energies.

Therefore, as an alternative, we use an ad hoc pseu-
doreaction coordinate method to estimate energy barriers.
Since each bond rotation only affects the bonding of four
atoms,26 e.g., atoms A, B, C, and D in Fig. 1, we define
AB ·CD as a pseudoreaction coordinate, where AB repre-
sents a vector connecting atom A to atom B, etc. Several
constrained optimizations along a path varying the reaction
coordinate are executed to locate the transition state between
the initial and final states. Several points between the initial

FIG. 1. �Color online� The migration of a sp2 carbon system
from one state to another by bond rotations. Each rotation involves
four atoms, e.g., those labeled with A, B, C, and D. The topology of
the system is changed by breaking two old bonds �e.g., AC, BD�
and forming two new bonds �e.g., AD, BC�.

FIG. 2. �Color online� The two-dimensional �2D� PES of creat-
ing a Stone-Wales defect in C60 computed by the classical REBO
potential �a� and the energy profile along the pseudoreaction coor-
dinate �b� where the maximum point �the red square� is identified
through natural splines �the dotted blue line� based on 10 sampled
points �the blue dots�. For comparison, it also shows in �b� the
projection �the solid black line� of 2D PES in �a�.
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and final configuration are sampled. At each point, AB ·CD
is fixed to some value and the total energy is obtained
through a constrained structural optimization. The peak value
of the energy path along the reaction coordinate is estimated
by the choosing the maximum of a natural cubic spline pass-
ing through the sampled points.

Figure 2�b� shows an example of the energy path in the
case of C60. For each saddle point, we sample 10 points
along the pseudoreaction coordinate. The configurations are
chosen near the initial and final states. The bond in question
is rotated in 0.171 rad increments for five increments from
each of the end points. The peak value is identified at 5.0 eV
using a natural spline interpolation, in comparison with 6.2
eV using an ab initio approach.26 Figure 2�b� shows a com-
parison between the saddle point determined in this fashion
and the PES predicted by the REBO potentials.

More generally, the approach produces a reasonable de-
scription of the energy surface. In load-free �6,6�, �5,5�, and
�4,4� tubes, the activation energy barrier of a single Stone-
Wales defect is, respectively: 9.4, 9.1, and 8.9 eV in ab
initio27 and 8.7, 8.5, and 8.1 eV in our calculations; in the
�5,5� tube, the activation energy of the same defect at 0.06,
0.12, and 0.15 strain is, respectively: 6.5, 3.9, and 3.0 eV in
ab initio27 and 7.1, 4.7, and 3.1 eV in our calculations. Our
approach thus yields satisfactory trends.

A typical KMC step involves a large number of atomic
scale relaxations. First, each bond is identified. The bond
rotation is applied, and the atomic scale structure determined
along with the change in energy. In the case that computed
energy barriers are incorporated into the calculation, the re-
action coordinate method described above is employed. For
N atoms, the system contains 3N /2 bonds and there are two
possible rotations per bond for a total of 3N minimizations
and saddle-point identifications per KMC step. The approach
is general and can incorporate PESs computed using empiri-
cal and first-principles approaches.

III. RESULTS AND DISCUSSION

As a first step, we consider a simple relaxation model in
which transition rates are determined solely by the differ-
ences between initial and final energies and the process that
is most rapid is always selected. These simulations are eco-
nomical and enable the identification of candidate deforma-
tion mechanism. A �10,10� CNT 47.073 Å long composed of
2760 atoms and including 4140 bonds is modeled. Periodic
boundary conditions are employed. Two constant engineer-
ing stress “experiments” are carried out by initially loading
the tube with a fixed engineering stress of 1.105 eV /Å2 �ini-
tial strain of �7.8%� and a fixed engineering stress of
1.635 eV /Å2 �initial strain of �13.0%�, respectively. The
results are summarized in Figs. 3–6.

At low stress, as shown in Fig. 3, after the initial plastic
event of creating a simple edge dislocation dipole separated
by three burgers vectors, subsequent deformation steps sim-
ply separate the dipole. This process is equivalent to dislo-
cation glide in three dimensional. One striking difference,
however, is that the motion of dislocations in CNT leads to
non-negligible buckling of the tube near the dislocations

�Fig. 4�. At high stress, as shown in Figs. 5 and 6, one sees a
very different deformation pattern. The initial step is, again
the creation of a simple dislocation dipole. However, instead
of the dislocation gliding as at low stress, subsequent steps
lead to the formation of a chain of dislocation dipoles with
no net Burgers vector. Eventually, the dipole chain breaks,
yielding two edge dislocations of opposite sign, each
screened by an array of dislocation dipoles. The subsequent
steps either lengthen these arrays by the creation of an addi-
tional dipole immediately in front of the dislocation array or
shorten them by the annihilation of the trailing dipole. In this
way, the two dislocation arrays glide away from each other
along the slip plane in a cooperative manner, which re-
sembles the motion of a caterpillar or worm. This detailed
process is sketched in Fig. 7 and we henceforth refer to the
dislocation screened by dipoles as dislocation “worms.”

The appearance of worms at high stress is, at first, puz-
zling. Within linear elasticity theory, the worms accommo-
date the same level of plastic strain per step as an isolated
dislocation. But in contrast, they have a larger number of
dislocation cores, and one expects a larger net dislocation
core energy. This dislocation core energy increase must be

FIG. 3. �Color online� Contour plots of strain energy in �10,10�
CNT with a periodic repeat length of 47.074 Å and under low axial
stress �1.105 eV /Å2�. The strain energy is defined to be the local
atom energy, i.e., 1/2 the bond energy of all the bonds including the
considered atom, less this same bond energy in the defect- and
stress-free CNT all divided by the area per atom in the unstrained
CNT. The dislocations are highlighted by circles with arrows indi-
cating the glide direction.

FIG. 4. �Color online� Contour plots of local tube radius corre-
sponding to Fig. 3. It is observed that carbon nanotubes are buckled
significantly near the two gliding dislocations: near the dislocations,
the tube radius varies by nearly 2 Å.
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balanced by another contribution to the energy.
Examination of two relaxed atomic scale configurations

with equivalent plastic strain reveals the source of this addi-
tional energy: given equal plastic strain, dislocation glide is
associated with a greater level of buckling within the CNT
than an array of dislocation dipoles. Isolated defects gener-
ated through glide have long-ranged stress fields and conse-
quently high local strain energies �Fig. 3�. These strain ener-
gies can be relieved by buckling that introduces a curvature
change in the carbon membrane near the defects at the cost
of shortening the tube length and yielding less macroscopic
strain. On the other hand, dislocation worms produce less
strain energy than isolated dislocations because the elastic
fields of closely packed dislocations are able to effectively
screen each other �Fig. 5�. In this case, less buckling is re-
quired to relax strain energies and thus the CNT is shortened
less, but the total dislocation core energy increases. At lower
stresses, the reduced macroscopic strain is not as costly as
the introduction of more dislocation core energies and glide
ensues. At higher stresses, screening dipoles increase the
core energy, but enable larger macroscopic strains with each
step.

Since the buckling energy is dependent on the radius of
the CNT, it is expected that the worm length is dependent on
both the applied stress and the tube radius. In addition, even
when screened, the dislocations interact over long ranges.
Hence the worm length should also vary as a function of
local stresses, the boundary conditions �e.g., the imposed pe-
riodicity�, the total plastic strain, etc. To demonstrate this
dependence, we construct a plastic deformation map �Fig. 8�
wherein we identify the number of dislocation dipoles
formed during nucleation of individual worms under con-
stant engineering stress conditions with periodic boundary
conditions.28 In addition, Fig. 8 identifies regions of the map
in which the nanotube simply fails in a brittle fashion �ener-
getically� and shows the yield strength of the armchair CNTs,
here defined as the stress for which the formation energy of a
Stone-Wales defect is equal to zero.

Several trends emerge. First, larger radii nanotubes lead to
a longer chain of dislocation dipoles for a given applied
stress. Second, tubes with larger radii display a transition
between simple dislocation glide and worm mediated glide at
a finite applied stress. Such transitions might be observable
using modern microscopy techniques. Third, in the limit of
zero mean curvature, i.e., infinite large radius, the CNT es-
sentially becomes graphene with plasticity, according to the
map, dominated by dislocation worms.

We have also conducted total energy electronic structure
calculations of various defect configurations in graphene and

FIG. 5. �Color online� Contour plots of strain energy in �10,10�
CNTs with a periodic repeat length of 47.074 Å and under high
axial stress �1.635 eV /Å2�. The strain energy is defined to be the
local atom energy, i.e., 1/2 the bond energy of all the bonds includ-
ing the considered atom, less this same bond energy in the defect-
and stress-free CNT all divided by the area per atom in the un-
strained CNT. The dislocation dipole chains/worms are highlighted
by double arrows. Image 1–3 show the breaking of a long disloca-
tion chain from image 3 to image 4, two short dislocation chains are
formed by annihilating several dislocation dipoles. Images 5 and 6
depict the wormlike motion of one chain.

FIG. 6. �Color online� Contour plots of local tube radius corre-
sponding to Fig. 5. Near the worms, the tube radius varies by ap-
proximately 1 Å. A comparison between these plots and those in
Fig. 4 reveals that isolated dislocations introduce more buckling
than dislocation worms.
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carbon nanotubes in order to ensure that the patterns emerg-
ing from the REBO description persist within more accurate
computational methods. The total energy electronic structure
calculations reported here are conducted within density func-
tional theory �DFT�,29,30 employ pseudopotentials31 and in-
voke the local density approximation to the exchange corre-
lation energy. Single-particle states are expanded via a plane-
wave basis set. The calculated lattice constants and bulk
moduli are in good agreement with experimental measure-
ments and other theoretical results, and for each calculation
we have ensured convergence with respect to both the

k-point mesh and the plane wave cutoff. Tables I and II sum-
marize the results obtained for a �7,7� carbon nanotube �192
atom supercell� and a 180 atom graphene supercell, respec-
tively.

A �7,7� carbon nanotube represented by a 196 atom super-
cell under tensile loads of 0%, 3.6%, and 11.0% strain was
initially considered. In this system, we find that again,
worms are favored over glide at high strains where buckling
is suppressed �e.g., at 3.6% and 11.0% strain�, while as ex-
pected, in the unstrained nanotube where buckling is favor-
able, the formation energy for the isolated dislocation �glide�
is lower than that of the worm. By comparison, for the same
system now described by REBO, glide is favored for the
unstrained and 3.6% strained system, while worms are fa-
vored at 11.6% strain. Thus, the trends obtained by the two
methods are similar, although in DFT the transition from
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FIG. 7. �a� An illustration of the nucleation of two worms con-
taining �nominally� three dislocations. At time step �1�, a dipole is
nucleated. At time �2�, a second dipole adjacent to the first is nucle-
ated. Time �3� sees the nucleation of a third dipole pair, and time �4�
the fourth. At time �5�, the central dipole annihilates leaving two
worms of nominal length three moving the directions shown. This
nucleation event would be assigned to region 4 in Fig. 8, because
the worm forming structure contains four dipoles. �b� An illustration
of the motion of the worm on the right at time �5� in part �a�. This
worm contains three to five dislocations. At time �1�, the worm is in
it shortest state. At time �2�, the worm begins nucleating a forward
dislocation pair �gray, circled�. By time �3�, the pair is completely
formed, and the worm in its longest configuration. At time �4�, the
trailing dislocation pair begins annihilating �gray, circled�. At time
�5�, the rearward pair has completely annihilated, and the worm is
again in its shortest state. The net result is the advancement of the
worm by a distance equal to twice the length of the Burgers vector.

FIG. 8. �Color online� The map of plastic deformation mecha-
nisms controlled by tube radius and axial stress for 85.2 Å long
armchair CNTs under constant engineering stress conditions using
formation energies of the defects. Symbols represent actual calcu-
lations and lines are guides for the eye. In the left region �low
stress�, dislocation glide is energetically preferred. In middle region,
worms are produced from arrays of dislocation dipoles. The number
indicates the number of dipoles introduced before it is favorable for
the chain to break into two worms. In the right region, CNT’s
evolve according to the fracture pattern and fail. The yield stress as
a function of tube radius is also plotted for reference.

TABLE I. Defect formation energies in �7,7� carbon nanotube
computed via DFT.

�7,7� Carbon nanotubes

Strain ezz 0% 3.6% 11.0%

Defect formation energies from DFT �eV�
SW 4.05 1.68 −3.48

Glide 6.89 3.03 −6.25

Worm 7.72 2.80 −7.60

Glide vs Worm energy �eV�
Eg−Ew �DFT� −0.83 0.23 1.35

Eg−Ew �REBO� −2.54 −1.04 0.42
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glide- to worm- mediated deformation takes place at even
smaller strains. We also compared the same defect formation
energies in a 180 atom graphene sheet at strains of 0%, 1.9%,
and 8.4%. In this system, we find that DFT always favors
worms over glide for all strains, while REBO does in fact
favor glide at 0% strain �although only by 0.13 eV� and then
quickly transitions into worm-mediated deformation before
1.9%. Thus, the DFT calculations demonstrate that qualita-
tively, the patterns described by the REBO description per-
sist, although it appears that DFT favors worm formation
over isolated dislocations even more strongly than the em-
pirical potentials �i.e., the transition line between glide and
worms in Fig. 8 is pushed toward the left�.

Finally, we explored the effects of introducing tempera-
ture and computed energy barriers for each bond rotation.

KMC simulations are used to model a constant engineering
stress experiment with a �10,10� armchair CNT �800 atoms
and 1200 bonds� loaded with an engineering stress of
1.0 eV /Å2 ��7.0% initial elastic strain� along the tube axis.
The temperature is fixed at 2000 K, below the sublimation
temperature of CNT ��2500 K�.

Figures 9 and 10 summarize simulation outcomes of 40
runs of the same KMC simulation with different random
seeds. At each selected strain, the KMC time data are repre-
sented by a box plot32 where the box shows the 0.25 quartile,
the sample median and the 0.75 quartile, and the whiskers
indicate the sample minimum and the sample maximum, and
plus symbols suggest possible outliers. The initial Stone-
Wales defect is nucleated from the defect-free material, tak-
ing 81.5 s on average, and then the tube elongates rapidly, in
accordance with previous results.33 Along the strain-time
curve, some snapshots of the system extracted from a typical
KMC run suggest that the plasticity is achieved by a combi-
nation of different mechanisms, e.g., dislocation glide, defect
nucleation, defect annihilation, etc. We note that the forma-
tion of dislocation chains persists, even when energy barriers
are included, indicating that this plasticity mechanism should
in fact occur alongside other mechanisms in experiment. Fi-
nally, the times reported for the simulations are based on the
assumption that �=1013 sec−1. We believe this to be a rea-
sonable order of magnitude estimate for the attempt fre-

FIG. 9. �Color online� The engineering strain versus time curve
�dash line� at 2000 K after the formation of an initial Stone-Wales
defect. The KMC time data from 40 runs of the same KMC simu-
lation with different random seeds are summarized in box plots.
Each box plot depicts the data through the five number summaries,
i.e., the smallest observation, lower quantile, median, upper quan-
tile, and largest observation, plus possible outliers.

FIG. 10. �Color online� Typical snapshots of CNT at several
strains in the KMC simulation where image S1–S6 correspond to
point S1–S6 in Fig. 9. Image S1 shows the nucleation a single SW
defect, i.e., an edge dislocation dipole which glides by one step in
image S2. In image S3, S4, and S5, a chain of five dislocations is
formed and then breaks in the middle, leaving a single dislocation
in one end. This dislocation then glides in image S6.

TABLE II. Defect formation energies in Graphene computed via
DFT.

Graphene sheet

Strain ezz 0% 1.9% 8.4%

Defect formation energies from DFT �eV�
SW 4.88 3.87 −0.78

Glide 10.09 8.78 0.22

Worm 8.99 7.55 −1.81

Glide vs Worm energy �eV�
Eg−Ew �DFT� 1.10 1.23 2.03

Eg−Ew �REBO� −0.13 0.20 1.15
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quency for bond rotation, but note that further study is war-
ranted.

It is also noted that the strain increment from one snap-
shot to the next is not uniform, although in all cases, the
origin is the movement of an edge dislocation by one Bur-
gers vector. If �e�X ,Y� is used to indicate the strain incre-
ment from the snapshot X to Y, then qualitatively we have
�e�S2,S3���e�S3,S4���e�S1,S2���e�S5,S6�
��e�S4,S5�. Interestingly, the process S2,S3 or S3,S4 in-
creases a dislocation chain; S1,S2 or S5,S6 makes a disloca-
tion glide; S4,S5 annihilates a defect. Thus within the atomic
scale calculations, the increment of strain associated with
dislocation motion is not fixed completely by the Burgers
vector of the dislocation, but is also influenced by the degree
of buckling.

If plasticity is mediated by worms, one might expect this
to have an impact on measured properties. For example, the
number of slip planes intersected by dislocation cores com-
prising a single worm is certainly larger than that of isolated
dislocations. If dislocations on differing slip planes interact
with contact forces, worms will increase the extent of this
interaction substantially, possibly yielding an increase in
hardening rate.

IV. CONCLUSION

In summary, we have developed a phase-space sampling
technique to study topological defect dynamics in CNTs. We

have discovered a defect pattern, dislocation worms that are
energetically favored in CNTs with larger radii. In compari-
son with dislocation glide, dislocation worms lead to less
buckling of the carbon membrane and hence allow more ef-
fective plastic elongation along the axial direction. KMC
simulations enable modeling of more realistic time scales by
explicitly reflecting computed energy barriers and are used to
explore the strain-time relationship in strain relaxation ex-
periments. Nucleation of the first Stone-Wales defect is the
strain rate controlling step. Subsequent steps produce various
defect patterns including dislocation glide, dipole nucleation,
and annihilation.
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